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Abstract. This paper presents the derivation of a new algorithm for the stable computation of
sample partial correlation coefficients.

-.._.We- start with Bareiss' algorithm for the solution of linear systems of equations with (non-
1 ymmetric) Toeplitz coefficient matrix and show how to generalize it to matrices that are not
Toeplitz. The so generalized Bareiss algorithm computes the LU and UL factorizations of those ma-
trices whose contiguous principal submatrices are all non-singular. For symmetric positive-definite
matrices A, which naturally satisfy this condition, the normalized version of Bareiss' algorithm is
just the Hyperbolic Cholesky algorithm, which computes the upper and lower triangular Cholesky
factors U and L of A by means of 2 x 2 hyperbolic rotations.

Guided by the data flow graph of the Hyperbolic Cholesky algorithm, we show that there exists
one sequence of 2 x 2 orthogonal rotations that effects the transformation from U to L such that
the sines of these rotations equal the hyperbolic tangents of the hyperbolic rotations From the
connection to the Hyperbolic Cholesky algorithm it also follows that, if A is a sample covariance
matrix, the sines are sample partial correlation coefficients. <T

Consequently, given a data matrix B it is recommended to determine sample partial correla-
tions directly from the columns of B instead of forming A = BTB and inviting potential loss of
numerical accuracy: compute the QR decomposition B = QU; apply plane rotations to transform
U to L; the sines of the rotation angles are partial correlations.
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1. Introduction
In [6, 7] a new algorithm was introduced for the stable computation of sample partial correlation

coefficients: the partial correlations are computed directly from the data matrix so as to avoid the
loss of numerical accuracy typically associated with the formation of the sample covariance matrix
(numerical examples are given in [6, 7]). This paper recounts the context that led to the discovery
of this result and presents derivations of the algorithm from multiple vantage points.

In Section 2 we start with Bareiss' algorithm for the solution of linear systems of equations
with (non-symmetric) Toeplitz coefficient matrix [3] and show how to generalize it to matrices that
are not Toeplitz. The so generalized Bareiss algorithm computes the LU and UL factorizations of
those matrices whose contiguous principal submatrices are all non-singular. For symmetric positive-
definite matrices A, which naturally satisfy this condition, Section 3 shows that the normalized
version of Bareiss' algorithm is just the Hyperbolic Cholesky algorithm [5], which computes the
upper and lower triangular Cholesky factors U and L of A by means of 2 x 2 hyperbolic rotations.

Guided by the data flow graph of the Hyperbolic Cholesky algorithm, we show that there exists
one sequence of 2 x 2 orthogonal rotations that effects the transformation from U to L such that
the sines of these rotations equal the hyperbolic tangents of the hyperbolic rotations. From the
connection to the Hyperbolic Cholesky algorithm it also follows that, if A is a sample covariance
matrix, the sines are sample partial correlation coefficients. Section paralg provides both, algebraic
and a geometric derivations of this result.

Since, given a data matrix B, sample partial correlations can be determined in a stable way
from a Cholesky factor of A - BTB it is recommended to determine them directly from the
columns of B instead of forming A and inviting potential loss of numerical accuracy: compute
the QR decomposition B = QU; apply plane rotations to transform U to L; the sines of the
rotation angles are partial correlations. More specifically, the transformation of U to L yields all
partial correlations between variables Bi and Bi+k, given the variables inbetween: Bi+1 ... Bi+i-,.
Section arbpar concludes the paper with some remarks on how to go about computing sample
partial correlations given arbitrary sets of variables.

2. The Generalized Bareiss Algorithm

In [3] E. Bareiss proposed an algorithm to solve the linear system

Ax = b,

where A is a n x n Toeplitz matrix; A does not have to be symmetric.

2.1. Description of the Algorithm
The algorithm reduces A to triangular form, modifies the right-hand side b accordingly, and

determines x by backsubstitution. The reduction process operates on the 2n x n array

and Bareiss proposes two versions of this process (see Sections 2 and 3 in [3]). We will generalize
the second version that treats the upper and lower halves of the array symmetrically, and merely
ignore the condition that A be Toeplitz.

The reduction process proceeds by removing successive superdiagonals in the upper half of the E]
array and successive subdiagonals in the lower half of the array. At completion, the array is of the -

form

U ' striutlon/_

Availability Codes
j .. Avail and/or --

,Dist Speolal

I I

or~~z



where L is a lower triangular matrix and U is an upper triangular matrix.
Before providing a formal description of the generalized Bareiss algorithm, we will illustrate

the algorithm by considering the case n = 4. The initial array is of the form

A = u u u u

The stars indicate the elements to be modified in step 1, the middle two rows remain unchanged.
The reduction process proceeds as follows.

1. Linear combinations of row i in the upper half of the array with row i + 1 in the lower half of
the array eliminate element (i, i + 1) in the upper half and element (i + 1, i) in the lower half,
1 < i<3:

d •••0••

d s•••0•
d s * *0

U/ U U U U U/ U Ud * * 0 * * *
s d * * 0 * *
* s d * * 0

Super- or subdiagonal elements doomed for elimination are represented by s, and diagonal ele-
ments participating in the elimination by d. Appropriate multiples for the linear combinations
are made up from the ratios sfd.

2. Linear combinations of row i in the upper half of the array with row i + 2 in the lower half of
the array eliminate element (i, i + 2) in the upper half and element (i + 2, i) in the lower half,

,~ i= 1,2:
d 0s * * 0 *
• d 0s * * 0 0
* 1 1 0 1 1 * 0
1 1 1 step2 1 1 1 1

u U U U U U U U

0 U U U 0 U U Us 0 d * 0 * * *
•* s0 d * 0 *

Note that the two rows responsible for an elimination contain zeros in corresponding positions,
hence no previously introduced zeros are destroyed.

3. Linear combinations of row 1 in the upper half of the array with row 4 in the lower half of the

= 1,2:



array eliminate element (1,4) in the upper half and element (4, 1) in the lower half:

dOOs * 0 0 0
1 0 0 1 0 0
I I 1 0 1 1 0
1 1 1 1 step3 1 1 1 1

U U U U U U U U

0 U U U 0 U U U
0 0 u u 0 0 u u
s 0 0 d 0 0 0 *

The matrices L and U obtained through this process will be shown in Section usefac to be the
right factors in the UL and LU decompositions of A. The total number of operations to find both
decompositions comes to 2 "-if (n - i) = n(n- 1) divisions and 2 En- (n - i)2 = n(n- 1)(n- 1)
multiplications; this is twice the number of operations for Gaussian elimination without pivoting,
which determines only one of the decompositions.

In the formal description of Lhe generalized Bareiss algorithm let, at the start of step k, a(k-)

denote row i in the upper half of the array, and a - k+ l ) row i in the lower half of the array. Thus

a(+ ) -- a - °) = ai equals the ith row of A. The jth elemeht in row ai is denoted by aik- ,
I % (-k+i)

and the jth element in row ai k+i) by ai, . The reduction process may now be expressed as:

Generalized Bareiss Algorithm

/ i (+0) \ ,

1 < i < n, -o +) - i
Sa O) J--a

for k= 1 to i- 1,
( _(k) -_(k-i)/ (-k+) (k-i)

_:(a. k a,i+, +k,i+k
1 <i<n-k, ( k1) = -k+ia /a,,(-) aak "+

k +k,i 1+aiki

Note, that we attempt to distinguish parallelism in the algorithms by employing two different
notations for repetitive operations: for-loops, such as the k-loop above, increase in unit increments
and iterations are performed one after the other; ranges, like 1 < i < n - k, denote independent
iterations that can all be performed in parallel for a given k.

2.2. UL and LU Matrix Factorizations
In order to show that the algorithm computes the right factors in the UL and LU decomposi-

tions of the matrix A it is convenient to regroup, for each step k, all the operations performed on
pairs of rows into a single matrix operation. Let R(k) denote the rectangle at the start of step k,
k > 1, that consists of the 'active' rows 1 ... n - k in the upper half of the array. Similarly, R(- k)
denotes the rectangle at the start of step k that consists of the active rows k + 1 ... n in the lower
half of the array.
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There are two main diagonals in a rectangular matrix: one starting from the top left corner,
and the second ending at the bottom right corner. As k increases, the leftmost (top) main diagonal
in R(k) and the rightmost (bottom) main diagonal in R(-k) shrink in place, they are denoted by
D (k) and D(-k), respectively (cf. the d elements in the example). These diagonals are also portions
of the main diagonals in the 2n x n array. The diagonal matrices associated with the two remaining

"I

main diagonals in Ra and R(k) are denoted Sm and Sx), respectively (cf. the s elements in
the example). Within the array these diagonals are portions of the kth superdiagonal and of the
kth subdiagonal, respectively. The multipliers in the reduction process are the respective ratios of
the diagonal elements of SUM and S(-k) (i.e. the elements to be eliminated in R(k) and R(-k)) and
the diagonal elements of D( - k) and D(k) (the pivots). Thus, at the start of step k, k > 1,

a (k-1) a (k-1)
a, a1,k+1

(k) a (k-1) a (k-1)
D a2,2  SI - 2,k+2a' (t- ) " k,n- '

an-k,n k an-kn

and

a (-kl) a(-k+i)
k+1,1k+k+

-I+) (-k+i)
- k+2,2 , -k) k+2k+2

a.(-k+l)a (-k+l)

Then, assuming DMk and D( - k) to be non-singular, step k consists of replacing the rectangles

R(k) In-k -S(k)(D(-k))-1 R(k)

R(-k,) by (-k(Dk)1 In-k )

We have to show that the product of the multiplier matrices can be appropriately partitioned

into upper and lower triangular matrices. In order to examine the band structure of matrices we
distinguish the two outermost non-zero diagonals of a matrix: Let the kth diagonal of a matrix M,
consisting of elements Mi,i+k, have index k where k ranges from -(n - 1) to n - 1. The valuation of
a matrix M is defined as the smallest index v(.4) of a non-zero diagonal in M; the degree of M is
the highest index 6(M) of a non-zero diagonal in M. Denote by By,6 the class of n x n matrices with
v(M) > v and 6(M) < 6. For instance, B 0 ,,_ 1 is the class of upper triangular matrices, B-(.-i),o
the class of lower triangular matrices, and B 1 ,._ 1 (B-(n-.),-.) the class of strictly upper (lower)
triangular matrices.

From the multiplication and addition of band matrices one knows: if Mi E B ,, 6 , and M12 E
B, 2,6, then the product Al1M2 E B,+,, 6 ,+ 6, and the sum All + A12 E Sm.n{.,,,m.{61,62 .When
we just want to emphasize the band structure of a matrix M in the class B,, 6, we write M,5 in
place of M. Thus, M,,,s6M,,2,b2 = A'i,,.+,+6 2 and M.,s, + -'l-, 62 = Mminfv1,v2},maX{S1,62}. Of
course cancellations could occur and the indices v and 6 in M,,6 may be smaller than the valuation
of M and larger than its degree, respectively.

The transformation performed on the 2n x n array at step k is a premultiplication by the
2n x 2n multiplier matrix

I' In-k Sk((-)-
1~ 0

0 Ik'

-S(-k)(D(k))-1 I-k _
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where -S(k)(D(-k)) - 1 and -S(-k)(D(k)) - l are diagonal of order n - k. Hence this transformation
has the structure

M o,0 Mkk)
M-k,-k MO ,o 0

It will now be shown by induction that the product of the transformations from step 1 to
step k, 1 < k < n - 1, is of the form

(MO,k-1 M1,k )
M-k,- M-(k- 1 ),0

The above representation is obviously true for k = 1. Assume now that 2 < k < n - 1 and that the
product of the transformations from step 1 to step k - 1 is

1(MAo.-2 Mi,k-1
M-(k-1),-l M-(k-2),o )

The product of the transformations from step 1 to step k is then

( MO,O Mk,k MO,k..2 M1,k-.1  '~( MO,k-.2 + M,k-.1 M,k.1 + M2,k
M-k,-k 'o,o kA'-(k-1),_l M-(k-2),o J M-k,-2 M-(k-),-l M-(k-l),-1 + M-(k.. 2),o}

(Mo,k-1 Ml,k )
= ,M-k,-l M-(k-1),O )

Consequently, the product of the transformations from step 1 to step n is of the form

G+L# L+)
where 0J+ and L+ are respective n x n upper and lower triangular matrices, and 0# and L# are
respective n X n strictly upper and lower triangular matrices. A slightly more refined induction
proof exploiting the fact that the M0 .0 submatrices in the kth transformation are actually n x n
identity matrices shows that the product of transformations from step 1 to step k has the form

In + Mf,,/- I M'1.,

( M-k,-l In + M-(k-1),-l

so that 0+ and L+ have unit diagonal.
Thus, the generalized Bareiss algorithm effects

0+ 0# A ) 0++f#)A L

where L is n x n lower triangular and U n x n upper triangular. Since U+ + U# and L+ + L# are
respectively unit lower and upper triangular matrices, the matrices L and U constitute the right
factors in the LU and UL decompositions of A:

A = OL, 0 =_(fT+ +6#-

A = LU, L (L+ + i#)- 1

5



2.3. Conditions for Successful Factorization
If the matrices D(k) and D(-*), 1 < k < n - 1, are non-singular then the generalized Bareiss

algorithm runs to completion and delivers LU and UL decompositions of A (a necessary and suf-
ficient condition can be derived assuming the ratio s/d is set to zero whenever a = d = 0). The
matrices D(k) and D( - k) are non-singular when their diagonal elements

a(k-i) (k-i) ... a(k-i) - 1 <k< n- 1
a11  ,a 2 2  , ... , k -

and
(-k+-) a(-k+ -) (k+ l ) 1 < k < n - 1
k+llk+ k+2,k+2 ".. " ,n ,

are all non-zero. We shall now interpret tlis condition in terms of the original matrix A.
The contiguous principal submatrix(ai+li+l ... ai+i,,+k..I

ai~k* Ii~l... ai+k..i,i+k..I/

of order k - 1 of A is called the (k - 1)-block after (row) i in A or the (k - 1)-blo-!k before (row) i + k

iAak-) a -k+) in the generalized Bareiss algorithm at step k can be
expressed in terms of the inverse of the (k - 1)-block after i in A:

a, = ai - ( aiji ... ai,i+k-1 ) :... a1,k

(ai+k-,i+l ... ai+k-l,i+k-1 ai+k-I

I

andil .. iik- 1 a~

Gi+k " ai+k - (ai+k,i+l ... ai+k,i+k- 1 ) I " •

(k-)i+k-,i+l -,i+k- ai+k-

Thus a( represents the ith row of the Schur complement of the (k - 1)-block after i in A, and

" i+1) the (i + k)th row. The Schur complement, as defined as by Ando [2], is a n x n matrix with
rows i ... i+ k equal to 0 and columns i ... i+ k equal to O.

The two equations above constitute a direct consequence of the quotient property of Schur

complements (Theorem 3 in [2]). Indeed the property is true for k = 1, since it states a + ° =

a.-°) = ai. Assuming it is true for the vectors a ki) and a _+k", the right-hand side in Bareiss'
first recurrence relation

(k) (k- 1) (ki(-k+l1)-I (-k+l)= ti  - aii+ k (ai+k,i+k) ai+lc

* is row i of the Schur complement of the 1-block after i + k - 1 in the Schur complement of the
(k - 1)-block after i in A and, from the quotient property, this is row i of the Schur complement of
the k-block after i in A:

ai+l,i+l ... ai+l,i+k aj+l

0k 
) \ ... ai+k,i+k ai+k

IN I I I I



Similarly the right-hand side in the second recurrence relation

a(-k) =(- k+1) -( -k+i )( (k-)r -1 -)ai+k -+k ,+k: t a

must be row i + k of the Schur complement of the k-block before i + k in A:

ia " ai+k - ( ai+k,i aik Ik- ) -" •

a,-k (a..ka, ... a-+k,,+ka +k-1 ) ( )
The interpretation of the intermediate quantities in the algorithm is now clear: P ) denotes the
jth element of row i in the Schur complement of the principal submatrix of order k just after row i
in A, similarly a 7k) is the jth element of row i in the Schur complement of the principal submatrix
of order kjust before row i in A.

Clearly the condition that(k-0) ,(k-1) (k-1)
all a 22 , .,an-k,n_k 1 < k < n-

all be non-zero is equivalent to the condition that the products
k k k

[If ~ ~ ( (kJ fl(-) fl(k-j)_ _akj I3 [ a1 -, 1+ I, a 1 < k < n 1a ,. " I" nl-*k+J, l-k+
4jl j=l j=l

all be non-zero. Likewise,
(-k+l) (-k+l) (-k+l ) 1 < k < n- 1

ak+lk+lI ak+2,k+2, * n,n 1 <

are non-zero if and only if

k k k1"1 a(-.1 l '- ajJ(-J+1) a.,JJ(-.i+1)1<k<i-
j +,,l+,, l a 2 +j, 2 +j1 " n-l-k+j,n-l-k+j, 1 < k < n

j=l j=l jl

are non-zero. The quotient property and Schur's determinantal formula (Section 4 in [41) imply that
the above products are equal to the respective determinants of the (k-1)-blocks after 1, 2, ..., n-
k, and before k + 1, k + 2, ... , n for i < k < a - 1. If the determinants of the first (second) set of
blocks are non-zero then all contiguous principal submatrices of orders 1 ... n - 1 of the leading
(trailing) principal submatrix of A of order n - 1 are non-singular, hence all contiguous principal
submatrices of A of orders 1 ... n - 1 are non-singular. Note that this condition is significantly
more stringent than if Gaussian elimination without pivoting were applied twice to compute U
and L, then only all leading and trailing principal submatrices of orders 1 ... n - 1 should be
non-singular.

3. The Hyperbolic Cholesky Algorithm
From now on, only symmetric positive-definite matrices A will be considered. Let L and U

be the respective lower and upper triangular Cholesky factors of A: A = LTL = UTU. Since the
generalized Bareiss algorithm computes the UL and LU decompositions of A with unit triangular
left factors, the algorithm could be applied to obtain the Cholesky factors L and U of A by simply
scaling every row in the right factors by the square-root of the corresponding diagonal element.

3.1. Derivation of the Hyperbolic Cholesky Algorithm
A more balanced alternative, presented in the theorem below, is to modify the generalized

Bareiss algorithm and scale intermediate quantities in order to obtain the Cholesky factors directly.
Note that the theorem and its proof remain true for symmetric positive-definite matrices A with
block entries if transposes are inserted in the right places.

7
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Theorem 3.1. If v ' = v!h0 ) = (a,,)fa 3 , 1:5 i <n, and

for1< k < n 1< i<n-k, Pi,i+k = V~~kl) (-+C)1

* (V?~~~~;) =i~ (1-pk,+kf4 (PkP)~)(~

then
a (k) = (a(:)4 Jk)' a-k = a-k V )

Proof. The proof is by induction. First note that since A is positive-definite aii is strictly positive,
the initialization can be performed, and the theorem holds for k = 0. Suppose it also holds for
k > 0. From the generalized Bareiss algorithm and the induction hypothesis

a(k+l) = (ak) - k) +(-k) -(-k)
aI Ia Ili,+ s~a+k+l+k+l a,+k+l

(k)4 [(k) (-k)

= (aii )f [Vik - iik1ik1

Now, from the quotient property

(k1) (k k) (-k) ka23 +' =aij - ,ik1a

(a,,i)4(1( (k)
Since A is positive-definite and, from the expression of the determinant of a contiguous principal
submatrix as a product in Section 2.3, a +i) is the ratio of the determinant of the (k + 2)-block

Ii(k 
lafter row i I to the determinant of the (k + 1)-block after row i it follows that ai+1 > 0,

li,i+k+l I < 1,and(a)4=a~')i-

Conseqnetitly,

The generalized Bareiss algorithm and the induction hypothesis also imply

(-k-1) = -k) _(-k) ()- .
a4 ,$. 1+k a+k+i.i(a2 k))-la

=(a i1i+k+ )4 2 V~k+ - (ai~k..1i+k+i )42ai~k~ii(aij))vi )

=(a l,i+k+l)4 2 - (ii k)

where the last statement is obtained by observing that a k) a a k) for a symmetric matrix.i+k+1, t,i+k+l
Making again use of the quotient property

t~kl~ik~= (a!++,+k+1 - P,i+k+l)

Thus
i akj1  (a~~)ii+k)4k~)

S%



Since the operations applied to pairs of rows are hyperbolic rotations, the algorithm has been
called the Hyperbolic Cholesky algorithm in [5]:

Hyperbolic Cholesky Algorithm

( v(+°). (aii)- ai)a' -a'1~< , _ (i(o) =

for k = 1 to n - 1,

1< i < n - k, Pi,i+k = Vi,i+ k V/+k,i+A/

V.~k = ( ,,-P~ ) V(k1)), [ ~V _ = (-k - ,+k)- -Pi,i+k (-k ) •
\ i+k) ) v+k I

The rows of the Cholesky factors are given by

( 1)( "-a(1) /0) U = -

VM (a$) ,)-Aa)

This algorithm differs slightly from the one presented in [5] because it computes both L and U
factors. The algorithm in (51 determines only U (or only L), and takes advantage of the property
that the 2 x 2 hyperbolic rotation matrices may be computed from the upper triangular (lower
triangular) part of each row. This property follows from the symmetry of A; when applied to
a non-symmetric matrix the generalized Bareiss algorithm cannot be decomposed into two such
independent parts.

The operation count for computing both Cholesky factors is In(n - 1) square roots, n(n - 1)
divisions and about in 3 multiplications; this is four times the number of operations of the Cholesky
algorithm. However the number of hyperbolic rotations is the same as the number of multiplica-
tions in the Cholesky algorithm and, since specialized hardware may be devised that determines
and applies hyperbolic rotations as fast (on about twice the area) as sequential multipliers, the Hy-
perbolic Cholesky algorithm may in some instances be competitive with the Cholesky algorithm.
In the context of parallel computation on systolic arrays, with nearest neighbor processor intercon-
nections and no broadcasting, Hyperbolic Cholesky computes a single Cholesky factor faster than
the Cholesky algorithm. Hence the more complex processors bring about an advantage in speed
[8].

3.2. Relation between Upper and Lower Triangular Cholesky Factor
With regard to parallel computation, data flow graphs have become a popular tool to visualize

and analyze the partial order of computations in an algorithm. For instance, the graph in Figure 1
depicts the partial order of computations in the Hyperbolic Cholesky algorithm for n = 4; hyperbolic

9
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(-0)
V

1

(0 (al)- al

(-(1)
V3

3

(03)

V4
4

Figure 1: Data Flow Graph for the Hyperbolic Cholesky
Algorithm, n = 4.

rotations whose tangents P,.q have the same index k belong to the same colum, thus clearly
showing that they are independent and can be determined in parallel.

4 The graph can also be viewved as the realization of a linear transformation in terms of elementary
operations (hyperbolic rotations); the transformation takes as input from the right the scaled rows

(a) iof A, and delivers the rows of U as outputs at the top and the rows of L as outputs
at the bottom. Each box in Figure 1 can be viewed as a linear four-terminal element, with two
inputs from the right and two outputs to the left. This interpretation illustrates the usefulness
of the data flow graph not only for parallel algorithm analysis but also for parallel algorithm
synthesis. Since U and L are Cholesky factors of tie same matrix A they must be related by a
n x ii orthogonal transformation, and the graph can help us to discover a decomposition of this
orthogonal transformation in terms of elementary, 2 x 2, orthogonal rotations. We simply exchange,
for every element, the roles of the bottom right inlput and the top left output, which now become
respectively output and input. The corresponding data flow graph is displayed in Figure 2; the
effect of this exchange on the parameters of tihe four-terminal elements is made explicit in thetheorem below. Note that the intermediate quantities on the edges in Figures 1 and 2 are identical,

10
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then the vectors ( v' w )T and ( v w,)T are related by(') C I-h) ( V
Sic c- t2c)1e ,h- h/h

Since c7" -- (1 - t ) 4 , the 2 x 2 matrix above is an orthogonal rotation

-)=(C _)(V) S-- th, C-(1S2 )2
, S c W

e

Thus, if we have

( - (1 - P -+k) 1 -Pii+k ( (k-i)!-kI (- Pi1) | (-k+l)
v+ kl - Pi,i+ A; 1 \v(

V,+k /

from the Hyperbolic Cholesky algorithm then

( V ( k ) 
I ( k -i )

)i =- Ci,i.k --8i,i+k Vi )iik Ciik (k
Vi+k / Sii-k C,,+k Vi+k I

where the elements of the rotation satisfy Si,i+k = Pi,i+k and Ci,i+k = (1 - P~i+k) . This relation
does not yet provide us with the complete algorithm: Pi,i+k is equal to v!k1) (v k+l)) - but

(-k+l)
this relationship cannot be employed directly since Vi+k,i+k is not available. However, the Schur
complement interpretation of V k) indicates that v(k) = 0 hence the rotation satisfies

/ I'/ -"(k) 1)
Ci,i+k -Si,i+k V Vi,i+k - 0
S\,i+k Ci,i+k iV kJ - +k,i+k

from which it directly follows that Ci,i+k = (1 + t?,i+k)- and Si,i+k = ci,i+kti,i+k with ti,i+k =

11k-lt (-~k) '-l Since at each step the superscript of every row being updated is incremented
by 1, the rotations can clearly be executed in the specified order and the result matrix equals

V(n-1) "

But this is just the lower triangular Cholesky factor L of A as produced by the Hyperbolic Cholesky
algorithm.

I

4. Application to the Computation of Sample Partial Correlations

Now consider the case where the n x n symmetric positive-definite matrix A represents the
sample covariance matrix of a m x n zero-mean data matrix B: A = (m - 1)- DTB [1] (without
loss of generality, the scaling factor (m - 1)-i is omitted in the sequel). The m x n matrix

B = (bl ... b,)
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contains a zero-mean column vector bi for each of n real random variables Bi, 1 < i < n. Now
the results of the previous section are employed to derive an algorithm for the computation of
certain sample partial correlations of B that does not require formation of BTB. We will give
both, algebraic and geometric derivations of the algorithm.

4.1. Algebraic Derivation
From Theorem 3.1 we know that Pi,i+i satisfies

S(0) [ (-0) -
Pi'i+I = i= (ai)-1ajj+l(aj+jj+j)-3,1 < i < n-.

Since A = BTB, pi,i+1 represents the sample correlation coefficient between Bi and Bi+i [1]. Fur-
thermore,

Pi,i+2 = i,i+2(V2i+2) -1 (ai)i a) +2, 4 2)-i, 1 < i < n - 2.

Hence, Pi,i+2 represents the sample partial correlation coefficient between Bi and Bi+2 holding Bi+j
fixed [1]. In general,

Pii+k = Vk1) (v(-k+) - = (a fa(a.-(.-k+))- 1 < k < n- iPi~~k v,i+ k (Vi+k,i+k) 1i i,i~k s 1 -,i -k

is the sample partial correlation coefficient between Bi and Bi+k holding the variables inbetween,
Bj+l ... Bi+k-1, fixed [1].

The upper triangular matrix U in the QR factorization B = QU of B (where Q has orthonor-
mal columns) is also the upper triangular Cholesky factor of A s.nce A = UTQTQU = UTU.
Theorem 3.2 asserts that, in the transformation from U to L, the sines o, the rotations are equal
to the partial correlations.

Accordingly, the following algorithm computes the partial correlations Pi,i+k directly from the
data matrix B:

1. Compute the QR decomposition B = QU of B, where Q has orthonormal columns and U is
upper triangular with positive diagonal elements.

2. Use the Cholesky Factor Interchange algorithm to transform U to L.

3. The sine of the rotation eliminating element (i, i + k) is the sample partial correlation coefficient

Pi,i+k between Bi and Bi+k, holding the variables inbetween, Bj+j ... Bi+k-1, fixed.

As shown in [6, 7] this algorithm avoids the loss of numerical accuracy associated with the formation
of BTB.I
4.2. Geometric Derivation

Because a purely algebraic interpretation does not seem to be very insightful, we offer a geo-
metric derivation of Theorem 3.2, starting with two simple examples.

First consider the 2 x 2 case. Let

U U11 U12 '
.O0 U22

be the upper triangular matrix (with positive diagonal elements) in the QR decomposition of the
m x 2 matrix B. Since aij = bTbj we know from Theorem 3.1 that the sample correlation coefficient
equals

Pjj+j = (bTbi) - (bTbi+ , )(bT+bi+)-

13
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r/2 - 012
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012
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U1

Figure 3: Angles in the 2 x 2 Example.

and thus represents the cosine of the angle between Bi and B,. So, the sample correlation P12
between B, and B2 is the cosine of the angle 012 between the two columns of U. Because of the
triangular structure of U its first column, (ul 0 )T, is a positive multiple of the first canonical
vector el = ( 1 0 )T while its second column is a linear combination of el and the second canonical
vectore 2 =(0 1 )T.

The columns of the matrix U may be rotated in such a way that the second column becomes
a positive multiple of e2 thereby turning the first into a linear combination of el and e2:

L = 19 ='111 0'L~=OU- (121 122"

The angle between el and e2 , denoted by L(e 1 ,e2), is +ir/2 and, using the same orientation con-
vention, the angle between the two columns is denoted by 012 =_ L(ul, u2). The fact that the first
column is a positive multiple of el implies L(e1 , u2 ) = 012. To turn the second column into a
positive multiple of e2 requires that all columns of U be rotated by the angle

L(u2, e2) = L(el,e2) - L(el,u 2) = ir/2 - 012,

see Figure 3. Since the angle between the two columns of U is preserved under the rotation, and
the angle of such a rotation

e=c -s)

completes 012 to a right angle:

* s = sin (ir/2 - 012) = cos 012 = P12.

Consequently, the desired sample correlation is the sine of the rotation 0.
Let us take a brief look at the 3 x 3 case

U11 U1 2 U13

. , U= { 0 U22 U23)
-__0 0 U 3 3

14
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At first, because the second column has only one more non-zero element than the first, the columns
of U can be rotated in the (el, e2 )-plane so as to make the second column co-linear with e2 ,(C12 -812 0 /Uii U12 U13 ) ( * 0

812 C1 2  0 0 U22 U 2 3  = -- * *
0 0 1 0 0 u33 0 0 U3

and P12 = 812. Here, 'co-linear' is used to mean 'a positive multiple of' and • denotes terms that
are non-zero in general.

In order to provide the geometric meaning of the partial correlations we appeal again to
Theorem 3.1:

Pi,(+2 = V (-I) )- = ()-() 1(-') , 1 < i < n - 2,
Pii2=v,i+2 vi+2,i+2/ = Ii ) i,i+2 4i2,i+2) ,

where

P)=a i.+(ii ,i+ T bi,-I(
= ,i,2+2 i) 2 = (bb+2) - (bTbi+)(b i+i)'(bib:+2 )

r} b~i~nT -1T
= bT[Im - bi+(bi+lbi+l ) bi+lJbi+ 2.

The center matrix
,.- bi+l(biT lbi+l) IbT~

is an orthogonal projector onto the subspace orthogonal to bi+l and as such symmetric and idem-
potent, so that

a =' -- bil lbi+,)' Tbil)T(I. - bi+l(b T lbi+l)-'b T I)bi+2 -1)i+

s,4 bT(In - bi+i(bTbi)bT)(I = = )b9 iii ii+2I t+

where

- b - bi 1(bT b.)-1(bT lbi) M-1) T I Tb!1  &+ bi -sil ilil) (ili, +2 -"bi+2 - bi+l(bi+lbi+l ) - (bi+lbi+2)

are the respective projections of bi and bi+2 onto the subspace orthogonal to the vector inbetween:
bi+1 . Similarly,

a(') (W) ) bl),! a(-I +2 (-)T -M
I a t+2 4  -1+2 &)+2"

Hence, ))T (1 1) r )T( T (1I) II
P,4i2-[b) b; )]-f[(b! b,+' ][(bj+2 ) b+ ]

represents the cosine of the angle between the respective projections of bi and bi+ 2 onto the subspace
orthogonal to the vector inbetween, bi+i.

Thus, to achieve conditioning of B1 and B3 with respect to B2 , the first and third columns
need to be projected onto the subspace orthogonal to the second column. Due to the triangular
structure of U and the effect of the previous rotation the second column is co-linear to e2 , and
the subspace orthogonal to it is just the plane (el,e 3 ). The partial correlation P13 can then be

6 determined from that rotation that makes co-linear with e 3 the projection of the third column onto
(el,e 3 ). Since this rotation takes place in a subspace orthogonal to the second column it does not
affect the second column, and the zero element introduced by the previous rotation is preserved:

pS13 0 C13(0 0 3C1 0 -S300 0)
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and P13 31 3s. Note that another non-zero element is introduced in the first column.
Again, because of the triangular structure of U and the effect of the second rotation the zero-

structure of the second and third columns is the same save for one element, the second column
is co-linear with e2 while the third is a linear combination of e2 and e3 . Thus the columns of
the matrix can be rotated to yield P23 by applying a rotation that makes the whole third column
co-linear with e3, and turns the second column into a linear combination of e2 and e3.

( 3 C23 3 * * = 121 122 0

0 823 C23  0 * 131 132 133

and P23 = 823.

Now we are ready to carry out this geometric argument in the general case. As it is easier for
the induction proof to follow a sequential order of elimination the version of the algorithm presented
in the theorem below is sequential.

Theorem 4.1. Geometric Version of Theorem 3.2.
If the elements in the Cholesky factor U of the sample covariance matrix A are eliminated in the
order

*1 2 ... n -
• n 2n - 3

* n(n- 1)/2

that is, proceeding row after row from top to bottom, and within each row from left to right,
then the sine of the rotation that eliminates element (i, i + k), is equal to the sample partial
correlation Pi,i+k, 1 < i < n - 1, 1 < k < n -.

Proof. The proof proceeds by induction.
The induction basis comprises the computation of partial correlations between B1 and all other

variables. To start with, the matrix U is of the form

,t * * * * ... *
• * * ... *

•* * ... *

0: * .:1
From the 2 x 2 case one can see that elimination of element (1,2) in the upper triangular matrix U
by a rotation in plane (el, e2 ) provides P12. The second column of the resulting matrix becomes
co-linear to e2 while the first column becomes a linear combination of el and e2. Hence, there is a
new non-zero element in the first column and a zero has been introduced in the first row:

• * * * ...

* * ... *
*€ o...



The 3 x 3 case showed that the correlation P13 between B, and B 3 given B 2 could be computed by
rotating the first and third column and thereby introducing a non-zero element in position (3, 1)
and a zero in position (1,3):

* * : . :3
Continuing this argument, the partial correlation p1,1+k between B, and Bl+k, given B2 ,
Bk is computed by performing a rotation in plane (el, el+k) thereby creating a zero element in
position (1, 1 + k), 1 < k < n - 1. Thus, once all correlations involving B, have been computed the
first column of the matrix has totally filled in, and the first row is zero except for the first element:

Assume that the partial correlations p.,.+k.- have already been computed for 1 < i, 1 < k-i <
n - i. The corresponding matrix is of the form

*Wi Wi,+k

*-Wj.- W 1 ,i4 i ... Wi+li+k1 Wi+,i+k*

!*

2*

As t the +k.i Wc+kli+k Wi+k m o,1+k *

* Wi+k,i+k*

0U 0

where Lo is lower triangular and U0 is upper triangular.
By induction hypothesis the entire lower triangular part of the leading i - 1 columns is non-

zero, and the ith column has k - 1 non-zeros in its lower triangular part due to the computation
Of Pwi+i /i i • • • Piii'k- *

In order to compute the next correlation Pi,i+k the corresponding columns w , Wi+k

of the current matrix must be projected onto a subspace orthogonal to the subspace spanned by
. (by an induction on k along the same lines as above one can easily show that p+k

represents the cosine of the angle between the respective projections ofbi and bi+k onto the subspace
orthogonal to the vectors inbetween, bi+ 1 ... bi+k-1). Due to the initial 'nesting' of the column
subspaces (i.e. the original upper triangular structure of U) the trailing components i + k, ... , n of
zero .... tith are zero; and due to the rotations performed in order to retrieve previous partial
correlations (i.e. the appearing lower triangular structure of L) the leading components i, . .. , i of
ofthe, rrent are zero. Hence the subspace spanned by Bt+h, ... , Bi+k1 is the space spanned
bye, ... , ei+k-1, and thespace orthogonal toit isthe space spanned byel, asi, e+k , ... I en,

Similarly, components 1, ea i- , i+k, ofnwgl and components 1, ... , i-1, i+k+ 1, ... , n

17
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of wi+k are zero; and the projections of wi and wi+k onto el, •. , ei, ei+k, . •, e,, are respectively
co-linear to ei and a linear combination of ei and ei+k. Thus, Pi,i+k is obtained by applying the
rotation in plane (ei, ei+k) that makes the projection of wi+k co-linear with ei; Pi,i+k is the sine of
that rotation. After the rotation the matrix has the form

LO

- .* 'ii ,

,i+*,i i+1 ,i+1 ... Wi+l,i+k-I Wi+l,i+k *
* ". . • . ,

S Wi+k-l,i i+k-l,i+k-I Wi+k-l,i+k *
* *S+k, i  Wi+k,i+k*

L Uo

According to Theorem 3.2, the elimination can be carried out in parallel as follows

* 1 2 3 ... n-2 n-1
* 3 4 ... n-1 n

• 5 ... n n+l,..I.

* 2n - 3

If only the partial correlations are of interest, and the matrix L is not needed, about half of
the arithmetic operations can be saved by applying the rotations merely to the trailing principal
submatrix of interest.

5. Computation of Arbitrary Partial Correlations
Subject to a certain inital ordering of the random variables B 1, ... , Bn our algorithm computes

the partial correlations Pi,i+k between Bi and Bi+k given Bi+1 , ... , Bi+k-I by completely reducing
the upper triangular matrix U to a lower triangular matrix L. However, one may want to compute
partial correlations where variables other than the ones inbetween are held fixed. To this end,
we extend our notation by introducing superscripts for the partial correlations .4 indicate the
fixed variables: the old Pi.,i+k is replaced by the new pii + k -  and in general p denotes the
partial correlation between variables Bi and Bj with variables held fixed whose indices belong to
S(i j S).

Now, other partial correlations may be computed by performing only a partial reduction. For
instance, consider the following 6 x 6 example

U11 U1 2 U 1 3 U 1 4 U15 U 1 6
U22 U23 U24 U25 U26

U U33 U34 U35 U36

U44 U4 5 U46
' t55 1/5 J
-I U66/

The leading three columns of U span the subspace of B 1, B 2 and B3 , and this is equal tn the space
spanned by the first three canonical vectors el, e2 and e3 due to the triangular structure of U. The

18
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space orthogonal to it is the one spanned by e4 , e5 , e6 and is, because of the triangular structure,
equal to that of columns 4 through 6 of U with components 1 to 3 set to zero. This means that
the correlation pl43 between B 4 and B5 , given B 1, B 2 and B 3 , can be computed by a rotation of U
in plane (e 4 , es). The resulting matrix has a new zero in column five and a fill-in in column four:

U 1 1  U12 U13 U1 4 UI5 U16)
U2 2 U23 U24 U2 5 U26

U U 3 3 tt34 U35 U3J

The next correlation that can be computed is p46 5 with a rotation in plane (e4 , e6 ), the subspace
orthogonal to B1 , B 2 , B 3 and B5 :

U11 U12 U13 U14 U15 U16)

U22 U23 U2 4 U2 5 U26
U33 U34 U35 U36

The last correlation p13 is determined by completing the transformation of the 3 x 3 trailing
principal submatrix to lower triangular form:

U1 U12 U13 U14 U15 U16
U 2 2 U23 U24 U2 5 U26

U33 U34 U35 U36

(2 1U22
1 1

In general, the correlation P,,i+l:'-1 for i > a and i < j < n can be determined be preserving
the leading a rows and columns of U and transforming the trailing principal submatrix of order n-a
to lower triangular form Lc by appropriate plane rotations:

. ... ]( ... .. 1

Similarly, the computation of p for j < n - / + 1 and 1 < i < j is accomplished
by transforming U to lower triangular form L (or obtaining directly a Q1, factorization of B) and
then transforming the leading/3 ×/3 principal submatrix of L to upper triangular form UO:(~.. ............... .. .. ... ..* . .

19:.o*
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Combining the two above strategies makes it possible to determine p1:o,i+:j-1,n-3+1:n for
Pijfo

- < i < j < n - 0 + 1 by transforming the trailing (n - a) x (n - a) principal submatrix of U to
block lower triangular form L,, (see the sketch below) and subsequently transforming the leading
( - a) x (a3 - a) triangular submatrix of L, to upper triangular form U,,O:

I ... ... .. ......... .... . .... ... ... .

* ... ... ... ... ... ... ... ..... ... .

* ... ... .. ...

. .. . * ... ... ... ...

.. .. . . . . .. .

............ *

S. ... .. . . ...

If it is known in advance which partial correlations are to be determined then the columns
of the m x n data matrix may be ordered so as to minimize the number of arithmetic operations
succeeding the computation of the Cholesky factor.

For instance, a lower bound on the number of arithmetic operations in the computation of
ps, where S is a subset of k > 0 numbers in 1 ... n not containing i and j, is O(n - k) since
our method requires at least one rotation to compute a partial correlation and the dimension of
the space involved is n - k. This lower bound is attained by ordering the columns so that the
set S represents the leading k columns of the data matrix followed by columns Bi and Bj. The
correlation p -can then be determined by one rotation in the plane (ek+l, ek+2) that, due to the
triangular structure of the Cholesky factor, involves O(n - k) non-zero element pairs.

Not only the ordering of the columns is important but also the sequence in which particular
correlations are computed. Consider the computation of a partial correlation between two variables• • 1 Sk

Bi and Bi with successively more variables fixed: p',. "", p , where S1 C ... C Sk and i, j
Sk. It seems that the following order of rotations constitutes the simplest way of determining the
above correlations. It is illustrated by means of a 5 x 5 example for the computation of P12, 12t

P1 -, and p12 . At first the columns of the data matrix are ordered so that i and j represent the first
two columns followed by the columns of S1, the columns of S2 - S1, the columns of S3 - S2 - S1,

etc. In the example this amounts to the 'natural' ordering B, ... B5 of the variables. The first
correlation P12 can now be computed with one rotation from the Cholesky factor U. To compute

P12 columns 2 and 3 of U are exchanged and a rotation in plane (e 2 , e3 ) results in the Cholesky
factor U' corresponding to the data matrix with variables in the order B 1 , B3 , B 2 , B4 , B5 . Since

• B3 is situated between B, and B2 two rotations suffice for the computation of p32. The effect of
these steps on the matrix is depicted below:

U111 1112 U13 U114 U115 \ U 111 U13 1112 U1 4 U115 /11~ U1 3 U1 2  U14 U1 5( U22 U23 U2 4  U2 5  U23U22 U2411251 U22 U23  U'2 4 L25
U 1331U341U351 U33 1134 U35 U I 13/4 U 5 1

U144 U45 U44 U45 U44 U45

U55 U55 U55
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! I I I * .... .n u - . . . .

*U 3 U3 * 3
U 4 4  U45 U44 U 4 5

U5 5  U 5 5 )

Similarly, exchanging columns 3 and 4 of U', performing a rotation in plane (e3, e 4 ) to get the
Cholesky factor U" of the data matrix corresponding to the ordering B1 , B3 , B4 , B2 , B, and
performing three more rotations on U" results in the extraction of p3:4. In gener, if the sets S,

differ by more than one index, more columns of the Cholesky factor must be exchanged to ensure
that all fixed variables are situated between Bi and Bi.

As for arbitrary sequences of partial correlations, the determination of the column ordering of
the data matrix as well as the computation sequence of the partial correlations so as to minimize
the number of arithmetic operations seems to be an NP-complete problem. The use of heuristics,
such as the following greedy approach, might lead to acceptable operation counts: the random
variables are ordered so that as many partial correlations as possible can be determined from the
resulting Cholesky factor. Repeatedly, the columns of the Cholesky factor are then re-ordered
according to the same strategy, the matrix returned to upper triangular form, and appropriate
rotations performed until all correlations have been computed.
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